The Second Johnson Homomorphism and the Second Rational Cohomology of the Johnson Kernel

نویسنده

  • TAKUYA SAKASAI
چکیده

The Johnson kernel is the subgroup of the mapping class group of a surface generated by Dehn twists along bounding simple closed curves, and has the second Johnson homomorphism as a free abelian quotient. We will determine the kernel of the map induced on the second rational cohomology by the second Johnson homomorphism in terms of the representation theory of the symplectic group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Johnson homomorphism and the third rational cohomology group of the Torelli group

To study the structure of the Torelli group, the Johnson homomorphism and the representation theory of the symplectic group are essential tools. Using them, we give a lower bound for the dimension of the third rational cohomology group and a new approach to the non-triviality of characteristic classes of surface bundles on the Torelli group.

متن کامل

The Johnson homomorphism and its kernel

We give a new proof of a celebrated theorem of Dennis Johnson that asserts that the kernel of the Johnson homomorphism on the Torelli subgroup of the mapping class group is generated by separating twists. In fact, we prove a more general result that also applies to “subsurface Torelli groups”. Using this, we extend Johnson’s calculation of the rational abelianization of the Torelli group not on...

متن کامل

THE JOHNSON HOMOMORPHISM AND THE SECOND COHOMOLOGY OF IAn

Let Fn be the free group on n generators. Define IAn to be group of automorphisms of Fn that act trivially on first homology. The Johnson homomorphism in this setting is a map from IAn to its abelianization. The first goal of this paper is to determine how much this map contributes to the second rational cohomology of IAn . A descending central series of IAn is given by the subgroups K (i) n wh...

متن کامل

On the Second Cohomology Categorical Group and a Hochschild-serre 2-exact Sequence

Résumé. We introduce the second cohomology categorical group of a categorical group G with coefficients in a symmetric G-categorical group and we show that it classifies extensions of G with symmetric kernel and a functorial section. Moreover, from an essentially surjective homomorphism of categorical groups we get 2-exact sequences à la Hochschild-Serre connecting the categorical groups of der...

متن کامل

The fundamental group and the first cohomology group

By a finite group cover of G, we will mean an M -definable connected group H with a surjective M -definable map H → G, whose kernel K is finite. The kernel K must lie within the center of H, because the action of H on K by conjugation yields a necessarily-trivial homomorphism from the connected group H to the finite group of automorphisms of K. If πi : Hi → G are finite group covers of G for i ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006